How many species are there on Earth? Nobody really knows, but one study estimated the number to be about 8.7 million and most of these species are insects.
The largest group of insects are the beetles. Beetles make up about 40% of insects and 30% of animal life. Why are there so many beetles?
Scientists used to believe that beetles had high rates of speciation, but a recent study co-authored by the awesome Dena Smith suggests that beetles might just be really good at avoiding extinction. You can read the paper here.
This resistance to extinction means that many beetle species are very old. Species living now were around millions or even tens of millions of years ago.
Beetle species don’t just live a long time, they are also fussy about where they live. They want the humidity and temperature in their homes to be just right. If it gets too hot or too wet or too cold, they move out and find another home.
Long species durations and specific habitat requirements make fossil beetles very useful for learning about past climates, especially the Pleistocene.
The Pleistocene Epoch is defined as the time period from about 2.6 million years ago to about 11,700 years ago. Like today, the Pleistocene was a period of rapid climate change. During this time there were between 20 and 30 glacial intervals where much of the world’s temperate zones were covered in ice. These glacial intervals were separated by warmer interglacial periods when the ice receded. This map shows the Wisconsinan glaciation 18,000 years ago.
I wanted to see if I could use GIS techniques to reconstruct Pleistocene climate using fossil beetles. I chose two sites for my study: The Titusville Peat in Pennsylvania and Ziegler Reservoir near Snowmass, Colorado. The Titusville site is an ancient peat bog during the mid-Wisconsinan interstadial between 43.5 and 39 thousand years ago (Elias, 1999).
Ziegler Reservoir is located near Snowmass Village, a ski resort in Colorado. In 2010, work began to widen the reservoir, but the remains of a mammoth were uncovered, leading to a paleontological excavation. Numerous mastodons, mammoths, ground sloths, bison and camels as well as insects were recovered from the site. Carbon dating indicates the age of the site ranges from 126 to 77 thousand years old (Elias, 2014).
I obtained the list of species for Titusville from the Paleobiology database and the species from Snowmass from Elias’s 2014 paper about the site.
I looked up species ranges using Global Biodiversity Information Facility (GBIF) and USGS’s Biodiversity Information Serving Our Nation (BISON) databases. These are sites that list museum specimens. Each record includes the longitude and latitude where the specimen was collected.
To determine climate preferences, I used two sources: The global ecological land unit map and Koppen Geiger climate zones
The global ecological land unit map was developed by esri and the USGS. It is a 250 m resolution raster containing information about bioclimate, landcover, lithology, and landforms. Here are my fossil insect species on top of the global ELU map.
The Koppen-Geiger climate classification was first developed in 1884. It has been revised several times, but remains the most widely used climate classification system. The system divides Earth climates into 30 zones with unique temperature, moisture and weather properties.

I used GIS a sequence of spatial joins to connect the ecological and climate data to species. I learned that 43.5- 39,000 years ago, when the Titusville Peat was deposited, Titusville was in Köppen Geiger zone Dfc, which subarctic with cool summer, wet all year. This means that winter temperatures were as low as -40 C (-40F) and summer temperatures as high as 30 C (86F) — much cooler than current climate zone Dfb (humid continental). The bioclimate was cold and wet and the dominant vegetation included needle leaf /evergreen forests.
The Snowmass data was more complicated because it represents almost 50,000 years and the site is on a mountain. On mountains, wind picks up flying insects from warmer, lower elevations and carries them to cooler, higher elevations in a process called orographic lifting.
To compensate for the long time period and the effects of orographic lifting, I divided the beetle assemblage into five time intervals and I removed all the flying beetles from the analysis.
The climate at the Snowmass site was initially similar to today’s climate. Insects suggest Koppen-Geiger Zone Dfc, subarctic with a cool summer.Over the next 2-3 intervals, the climate gradually cooled from Zone Dfc to to zone ET (tundra with no warm season). By the 4th interval, all insects indicated Koppen Geiger zone ET or tundra. But, in the last interval, the prevalence of insects from Zone Dfc indicates warming. As in Titusville, the bioclimate was cold and wet and the dominant vegetation included needle leaf /evergreen forests.
You can see the modern distribution of Dfc and ET in this map.
Using insects to model past ecosystems isn’t a new idea. But, as far as I know, no one else has used GIS to join insects to specific ecological variables for climate reconstruction. I will be presenting the more scientific version of this research at the Geological Society of America Annual Meeting in Baltimore on Tuesday, November 3.